Atmospheric CO2 Capture by Microalgae Culturing: A Critical Review
##plugins.themes.bootstrap3.article.main##
Abstract
With rising fuel demands, the carbon which is avowed as inefficient energy sources is continually declining. This method is a promiscuous way not of lowering CO2 emissions but of producing economic benefits. The physiochemical conversion of carbon dioxide into chemical (energy) goods without contamination. The production of microalgae will thus help to repair CO2 and biofuels sources. In this present work, we have done a comprehensive reviewed in this paper that carbon dioxide capture mechanism, contribution of microalgae for biomass production. As a result of using microalgae (S. platensis, Salmeriensis, and Scenedesmus dimorphus are capture maximum CO2 respectively of 1.00 and 0.81gL−1 d −1, 1.0gL−1day−1-2.8gL−1day−1 and 0.8g CO2 L −1d −1 with the production of microalgae biomass (<0.4g L-1day-1, 129.24 mg−1d−1, and 0.44gcel L−1d−1)in wastewater. The overall cost of the process is considerably reduced when these light conversion and chemical processes are combined, making carbon dioxide collection even more economically viable. Microalgae was used on extensively for biodiesel production and carbon dioxide reduction, and the processes were significantly enhanced with the use of microalgae. To conclude microalgae holds a strong promise in the 21st-century biofuel industry and environmentally friendly by capturing CO2
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Bahadar, A. and Khan, M.B., 2013. Progress in energy from microalgae: a review. Renewable and Sustainable Energy Reviews, 27, pp.128-148.
Fon Sing, S., Isdepsky, A., Borowitzka, M.A. and Moheimani, N.R., 2013. Production of biofuels from microalgae. Mitigation and adaptation strategies for global change, 18(1), pp.47-72.
Gao, Y., Gregor, C., Liang, Y., Tang, D. and Tweed, C., 2012. Algae biodiesel-a feasibility report. Chemistry Central Journal, 6(1), pp.1-16.
Wiencke, C., Clayton, M.N., Gómez, I., Iken, K., Lüder, U.H., Amsler, C.D., Karsten, U., Hanelt, D., Bischof, K. and Dunton, K., 2007. Life trategy, ecophysiology and ecology of seaweeds in polar waters. Reviews in Environmental Science and Bio/Technology, 6(1), pp.95-126.
Milledge, J.J., 2011. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science andBio/Technology, 10(1), pp.31-41.
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A., 2006. Commercial applications of microalgae. Journal of bioscience and ioengineering, 101(2), pp.87-96.
Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S. and De Lasa, H., 2013. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renewable and Sustainable Energy Reviews, 27, pp.622-653.
Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I. and Yang, J.W., 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 69(4), pp.451-455.
Benemann, J.R., 1993. Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy conversion and management, 34(9-11), pp.999-1004.
Watanabe, Y., Ohmura, N. and Saiki, H., 1992. Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Energy Conversion and Management, 33(5-8), pp.545-552.
Razzak, S.A., Ali, S.A.M., Hossain, M.M. and deLasa, H., 2017. Biological CO2 fixation with production of microalgae in wastewater–a review. Renewable and Sustainable Energy Reviews, 76, pp.379-390.
Wang, B., Li, Y., Wu, N. and Lan, C.Q., 2008. CO2 biomitigation using microalgae. Applied microbiology and biotechnology, 79(5), pp.707-718.
Brennan, L. and Owende, P., 2010. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and coproducts. Renewable and sustainable energy reviews, 14(2), pp.557-577.
Hossain, M.M. and de Lasa, H.I., 2008. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science, 63(18), pp.4433-4451.
Abu-Khader, M.M., 2006. Recent progress in CO2 capture/sequestration: a review. Energy Sources, Part A, 28(14), pp.1261-1279.
Lee, J.S. and Lee, J.P., 2003. Review of advances in biological CO2 mitigation technology. Biotechnology and Bioprocess Engineering, 8(6), pp.354-359.Green University Press 33Atmospheric CO2 Capture by Microalgae Culturing: A Critical Review
Yanagi, M., Watanabe, Y. and Saiki, H., 1995. CO2 fixation by Chlorella sp. HA-1 and its utilization. energy conversion and Management, 36(6-9), pp.713-716.
Mirón, A.S., Garcıa, M.C.C., Gómez, A.C., Camacho, F.G., Grima, E.M. and Chisti, Y., 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), pp.287-297.
Sawayama, S., Inoue, S., Dote, Y. and Yokoyama, S.Y., 1995. CO2 fixation and oil production through microalga. Energy Conversion and Management, 36(6-9), pp.729-731.
Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C. and Lin, C.S., 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology, 99(9), pp.3389-3396.
Cheng, L., Zhang, L., Chen, H. and Gao, C., 2006. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and purification technology, 50(3), pp.324-329.
Costa, J.A.V., Colla, L.M. and Duarte Filho, P.F., 2004. Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 92(3), pp.237-241.
De Morais, M.G. and Costa, J.A.V., 2007. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology letters, 29(9), pp.1349-1352.
Ho, S.H., Chen, C.Y. and Chang, J.S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate roduction of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource technology, 113, pp.244-252.
Ge, Y., Liu, J. and Tian, G., 2011. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresource Technology, 102(1), pp.130-134.
Hahn, T.W., Lohakare, J.D., Lee, S.L., Moon, W.K. and Chae, B.J., 2006. Effects of supplementation of β-glucans on growth performance, nutrient digestibility, and immunity in weanling pigs. Journal of Animal Science, 84(6), pp.1422-1428.
Keffer, J.E. and Kleinheinz, G.T., 2002. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. Journal of Industrial Microbiology and Biotechnology, 29(5), pp.275-280.
Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H. and Miyachi, S., 1995. Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Conversion and Management, 36(6-9), pp.689-692.
Yoshihara, K.I., Nagase, H., Eguchi, K., Hirata, K. and Miyamoto, K., 1996. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA113 cultivated in a long tubular photobioreactor. Journal of fermentation and bioengineering, 82(4), pp.351-354.
Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H. and Lin, C.S., 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource technology, 100(2), pp.833-838.
Chisti, Y., 2010. Fuels from microalgae. Biofuels, 1(2), pp.233-235.
Chi, Z., O’Fallon, J.V. and Chen, S., 2011. Bicarbonate produced from carbon capture for algae culture. Trends in biotechnology, 29(11), pp.537-541.
Chi, Z., O’Fallon, J.V. and Chen, S., 2011. Bicarbonate produced from carbon capture for algae culture. Trends in biotechnology, 29(11), pp.537-541.
Zhao, B. and Su, Y., 2014. Process effect of microalgalcarbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Reviews, 31, pp.121-132.
Klinthong, W., Yang, Y.H., Huang, C.H. and Tan, C.S., 2015. A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol and Air Quality Research, 15(2), pp.712-742.
Mirón, A.S., Gomez, A.C., Camacho, F.G., Grima, E.M. and Chisti, Y., 1999. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In Progress in industrial microbiology (Vol. 35, pp. 249-270). Elsevier.
Sierra, E., Acién, F.G., Fernández, J.M., García, J.L., González, C. and Molina, E., 2008. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1-3), pp.136-147.
Jacob-Lopes, E., Scoparo, C.H.G., Queiroz, M.I. and Franco, T.T., 2010. Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, 51(5), pp.894-900.
Valdovinos-García, E.M., Barajas-Fernández, J., Olán-Acosta, M.D.L.Á., Petriz-Prieto, M.A., Guzmán-López, A. and BravoSánchez, M.G., 2020. Techno-economic study of CO2 capture of a thermoelectric plant using microalgae (Chlorella vulgaris) for production of feedstock for bioenergy. Energies, 13(2), p.413.
Esteves, A.F., Soares, O.S., Vilar, V.J., Pires, J.C. and Gonçalves, A.L., 2020. The effect of light wavelength on CO2 capture, biomass production and nutrient uptake by green microalgae: a step forward on process integration and optimisation. Energies, 13(2), p.333.
Zhang, W., Zhao, C., Cao, W., Sun, S., Hu, C., Liu, J. and Zhao, Y., 2020. Removal of pollutants from biogas slurry and CO2 capture in biogas by microalgae-based technology: a systematic review. Environmental Science and Pollution Research, 27(23), pp.28749-28767.
Tang, D., Han, W., Li, P., Miao, X. and Zhong, J., 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource technology, 102(3), pp.3071-3076.
Mondal, M., Ghosh, A., Gayen, K., Halder, G. and Tiwari, O.N., 2017. Carbon dioxide bio-fixation by Chlorella sp. BTA 9031 towards biomass and lipid production: Optimization using Central Composite Design approach. Journal of CO2 Utilization, 22, pp.317-329.
Kuo, C.M., Jian, J.F., Lin, T.H., Chang, Y.B., Wan, X.H., Lai, J.T., Chang, J.S. and Lin, C.S., 2016. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresource technology, 221, pp.241-250.
Jin, X., Gong, S., Chen, Z., Xia, J. and Xiang, W., 2021. Potential microalgal strains for converting flue gas CO2 into biomass. Journal of Applied Phycology, 33(1), pp.47-55.
Hazman, N.A.S., Yasin, N.H.M., Takriff, M.S., Hasan, H.A.,Kamarudin, K.F. and Hakimi, N.I.N.M., 2018. Integrated palm oil mill effluent treatment and CO2 sequestration by microalgae. Sains Malaysiana, 47(7), pp.1455-1464.
Pineda-Camacho, G., de María Guillén-Jiménez, F., PérezSánchez, A., Raymundo-Núñez, L.M. and Mendoza-Trinidad,G., 2019. Effect of CO2 on the generation of biomass and lipids by Monoraphidium contortum: A promising microalga for the production of biodiesel. Bioresource Technology Reports, 8, p.100313.
Nithiya, E.M., Tamilmani, J., Vasumathi, K.K. and Premalatha, M., 2017. Improved CO2 fixation with Oscillatoria sp. in response to various supply frequencies of CO2 supply. Journal of CO2 Utilization, 18, pp.198-205.
Kassim, M.A. and Meng, T.K., 2017. Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Science of the total environment, 584, pp.1121-1129.
Chiu, S.Y., Kao, C.Y., Huang, T.T., Lin, C.J., Ong, S.C., Chen, C.D., Chang, J.S. and Lin, C.S., 2011. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using 34 Green University PressGUB Journal of Science and Engineering, Volume 08, Issue 01, December 2021Chlorella sp. cultures. Bioresource technology, 102(19), pp.9135-9142.
Miah, M.B, Mahmud, Md., 2020. Geographical Data Analysis of CO2 Emissions Applying GIS in South Asia. International Conference on Materials, Energy, Environment and Engineering.