Numerical Simulation of an Improved CZTS/WS2 PV Cell by SCAPS 1-D

##plugins.themes.bootstrap3.article.main##

A. A. Md. Monzur-Ul-Akhir
Md Touhidul Imam

Abstract

CZTS solar cells are promising among the third-generation solar cell. Because of its earth abundant materials and less toxicity CZTS solar cell can perform a sustainable role as an absorber layer. The optimization of a buffer layer is still a challenge and efficiency are still low than other thin film solar cells. In this study, WS2 buffer layer have been used to simulate the PV cell structure in SCAPS-1D simulation software. No research has been found where CZTS and WS2 is used together. We have achieved a maximum efficiency of η = 18.90 % at 300 K working temperature and other factors i.e., Voc, Jsc and FF are also promising. The highest certified efficiency of CZTS solar cell is nearly 12%. The simulation profile can be a guideline for fabricating the improved PV cell.

##plugins.themes.bootstrap3.article.details##

Area :
Articles

References

Fatemi Shariat Panahi, S. R., Abbasi, A., Ghods, V., &Amirahmadi, M. (2020). Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously. Journal of Materials Science: Materials in Electronics, 31(14), 11527–11537.

Green, M. A. (2000). Photovoltaics: technology overview. Energy policy, 28(14), 989-998.

Liou, H. M. (2010). Overview of the photovoltaic technology status and perspective in Taiwan. Renewable and Sustainable Energy Reviews, 14(4), 1202-1215.

Green, M. A. (2002). Third generation photovoltaics: solar cells forn2020 and beyond. Physica E: Low-dimensional Systems and Nanostructures, 14(1-2), 65-70.

Bagher, A. M., Vahid, M. M. A., & Mohsen, M. (2015). Types of solarcells and application. American Journal of optics and Photonics, 3(5), 94-113

Rao, S., Morankar, A., Verma, H., &Goswami, P. (2016). Emergingphotovoltaics: organic, copper zinc tin sulphide, and perovskite-based solar cells. J. Appl. Chem, 2016, 3971579.

Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., &Hao, X. (2020). Solar cell efficiency tables (version56). Progress in Photovoltaics: Research and Applications, 28(NREL/JA-5900-77544).

Green, M. A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D.,Levi, D. H., & Ho‐Baillie, A. W. (2017). Solar cell efficiency tables(version 49). Progress in photovoltaics: research and applications, 25(1), 3-13.

Yeh, M. Y., Lei, P. H., Lin, S. H., & Yang, C. D. (2016). Copper-zinctin-sulfur thin film using spin-coating technology. Materials, 9(7), 526.

Katagiri, H., Saitoh, K., Washio, T., Shinohara, H., Kurumadani, T., &Miyajima, S. (2001). Development of thin film solar cell based on Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 65(1-4), 141-148.

Zakaria, Z., Chelvanathan, P., Rashid, M. J., Akhtaruzzaman, M.Alam, M. M., Al-Othman, Z. A. ...& Amin, N. (2015). Effects of sulfurization temperature on Cu2ZnSnS4 thin film deposited by single source thermal evaporation method. Japanese Journal of Applied Physics, 54(8S1), 08KC18.

Jhuma, F. A., Shaily, M. Z., & Rashid, M. J. (2019). Towards highefficiency CZTS solar cell through buffer layer optimization. Materialsfor Renewable and Sustainable Energy, 8(1), 1-7.

Li, X., Yang, X., Yuwen, L., Yang, W., Weng, L., Teng, Z., &Wang,(2016). Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials, 96, 24-32.

Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H. ...&Hao,(2018). Cu 2 ZnSnS 4 solar cells with over 10% power conversion efficiency enabled by hetero-junction heat treatment. Nature Energy, 3(9), 764-772.

Dasgupta, U., Chatterjee, S., & Pal, A. J. (2017). Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 172, 353-360.

Hankare, P. P., Manikshete, A. H., Sathe, D. J., Chate, P. A., Patil, A. A., &Garadkar, K. M. (2009). WS2 thin films: Optoelectronic characterization. Journal of alloys and compounds, 479(1-2), 657-660.

Gusakova, J., Wang, X., Shiau, L. L., Krivosheeva, A., Shaposhnikov, V., Borisenko, V. ...&Tay, B. K. (2017). Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ‐2e method). physica status solidi (a), 214(12), 1700218.

Hussain, S., Patil, S. A., Memon, A. A., Vikraman, D., Abbas, H. G., Jeong, S. H., ... & Jung, J. (2018). Development of a WS2/MoTe2 hetero-structure as a counter electrode for the improved performance in dye-sensitized solar cells. Inorganic Chemistry Frontiers,5(12), 3178-3183.

Li, X., Li, X., Li, Z., Wang, J., & Zhang, J. (2017). WS2 Nanoflakes based selective ammonia sensors at room temperature. Sensors and Actuators B: Chemical, 240, 273-277.

Liang, A., Li, D., Zhou, W., Wu, Y., Ye, G., Wu, J. ...& Du, Y. (2018). Robust flexible WS2/PEDOT: PSS film for use in high-performance miniature supercapacitors. JournalofElectroanalyticalChemistry, 824, 136-146.

Kim, J. H., Yu, S., Lee, S. W., Lee, S. Y., Kim, K. S., Kim, Y. A., & Yang, C. M. (2020). Enhanced Thermoelectric Properties of WS2/Single-Walled Carbon Nanohorn Nanocomposites. Crystals, 10(2), 140.

Rafiq, M. K. S. B., Amin, N., Alharbi, H. F., Luqman, M., Ayob, A., Alharthi, Y. S. ...&Akhtaruzzaman, (2020). WS 2: a new window layer material for solar cell application. Scientific reports, 10(1), 1-11.

Sobayel, K., Shahinuzzaman, M., Amin, N., Karim, M. R., Dar, M. A., Gul, R. ...&Akhtaruzzaman, M. (2020). Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Solar Energy, 207, 479-485.

Sang, Y., Zhao, Z., Zhao, M., Hao, P., Leng, Y., & Liu, H. (2015).b From UV to near‐infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Advanced materials, 27(2), 363-369.

Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N. A., Chey, S. J., &Guha, S. (2013). Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 21(1), 72-76.

Yang, K. J., Sim, J. H., Jeon, B., Son, D. H., Kim, D. H., Sung, S. J., ... & Kang, J. K. (2015). Effects of Na and MoS2 on Cu2ZnSnS4 thin‐film solar cell. Progress in Photovoltaic: Research and Applications, 23(7), 862-873.

Jhuma, F. A., & Rashid, M. J. (2020). Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell. Journal of Theoretical and Applied Physics, 14(1), 75-84.

Rana, M. S., Islam, M. M., &Julkarnain, M. (2021). Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer. Solar Energy, 226, 272-287.

Inoue, Y., Hála, M., Steigert, A., Klenk, R., &Siebentritt, S. (2015, June). Optimization of buffer layer/i-layer band lignment. In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (pp. 1-5). IEEE.

Kartopu, G., Clayton, A. J., Brooks, W. S., Hodgson, S. D., Barrioz, V., Maertens, A., ...& Irvine, S. J. (2014). Effect of window layer composition in Cd1− xZnxS/CdTe solar cells. Progress in Photovoltaics: Research and Applications, 22(1), 18-23.

Hossain, S., Amin, N., Martin, M. A., Aliyu, M. M., Razykov, T., &Sopian, K. (2011). A NUMERICAL STUDY ON THE PROSPECTS OF HIGH EFFICIENCY ULTRA THIN Zn x Cd 1-x S/CdTe Solar Cell. Chalcogenide Letters, 8(4).

Lin, P., Lin, L., Yu, J., Cheng, S., Lu, P., &Zheng, Q. (2014). Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D. Journal of Applied Science andEngineering, 17(4), 383-390

Mebarkia, C., Dib, D., Zerfaoui, H., &Belghit, R. (2016). Energyefficiency of a photovoltaic cell based thin films CZTS by SCAPS. Journal of Fundamental and Applied Sciences, 8(2), 363-371.

Djinkwi Wanda, M., Ouédraogo, S., Tchoffo, F., Zougmoré, F., &Ndjaka, J. M. B. (2016). Numerical investigations and analysis of Cu2ZnSnS4 based solar cells by SCAPS-1D. International Journal ofPhotoenergy, 2016.

Coutal, C., Azema, A., &Roustan, J. C. (1996). Fabrication and characterization of ITO thin films deposited by excimer laser evaporation. Thin Solid Films, 288(1-2), 248-253

T. Imam & A. A. Md. Monzur-Ul-Akhir (2021). Analysis of solar photovoltaic performance in different global regions. Journal of Emerging Trends in Electrical Engineering. Volume 3 Issue 1. http://doi.org/10.5281/zenodo.4767172